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Abstract

In this paper, hydrodynamic and thermal behaviors of fluid inside a wavy walled enclosure are investigated. The enclosure c
two wavy and two straight walls. The top and the bottom walls are wavy and kept isothermal. Two vertical straight walls (right a
are considered adiabatic. The integral forms of the governing equations are solved numerically using Finite Volume method. Com
domains are divided into finite numbers of body fitted control volumes with collocated variable arrangement. Results are presen
form of local and global Nusselt number distributions for a selected range of Grashof number (103–107). Streamlines and isothermal lines a
also presented for four different values (0.0, 0.05, 0.1, 0.15) of amplitude-wavelength ratios (= α/λ) and for a fluid having Prandtl numbe
1.0. Throughout this study, aspect ratio (= δ/λ) is kept equal to 0.40. Calculated results for Nusselt number are compared with the av
references.
 2002 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Keywords:Amplitude-wavelength ratio; Bi-cellular; Heat transfer; Multi-cellular; Natural convection; Wavy enclosure
ure
hea
ular
tion
es,
ith
the

ered
ipes
ges
om
st.
ts

any
nter-

ity of

ity of

cts
it.
on

form

ntal
idal
een
s

e of
orm
nka
de a
ow
wall
avy
nd
in a
was

ase
and
fer
uct
heat
1. Introduction

Natural convection heat transfer inside a wavy enclos
is one of the several devices employed for enhancing the
and mass transfer efficiency. Heat transfer inside ann
space, air-filled cavity or annular sector has wide applica
in many engineering problems like electronic packag
micro-electronic devices etc. The change of flow field w
changes in surface waviness is a special feature of
complex corrugated-duct geometry that is not encount
in conventional ducts such as circular and annular p
and rectangular ducts. In addition to the electronic packa
and heat exchanger design, wavy geometry has also s
geophysical applications like flows in the earth’s cru
Geometrical complexity of such cavity or duct affec
largely the flow pattern. Their fabrication depends on m
parameters like amplitude, wavelength, phase angle, i

* Corresponding author.
E-mail addresses:pdas@ualberta.ca (P.K. Das),

smahmud@engmail.uwaterloo.ca (S. Mahmud).
1 Present address: Department of Mechanical Engineering, Univers

Alberta, Edmonton, AB T6G 2G8, Canada.
2 Present address: Department of Mechanical Engineering, Univers

Waterloo, Waterloo, Ontario N2L3G1, Canada.
1290-0729/02/$ – see front matter 2002 Éditions scientifiques et médicales
doi:10.1016/S1290-0729(02)00040-6
t

e

wall spacing etc. Each of the parameter significantly affe
the hydrodynamic and thermal behavior of fluid inside
These configurations are not idealities and its effect
flow phenomenon motivates many researchers to per
experimental or analytical work on this topic.

Saidi et al. [1] presented numerical and experime
results of flow over and heat transfer from a sinuso
cavity. They reported that the total heat exchange betw
the wavy wall of the cavity and the flowing fluid wa
reduced by the presence of vortex. Vortex plays the rol
a thermal screen, which creates a large region of unif
temperature in the bottom of the cavity. Wang and Va
[2] presented heat transfer and flow characteristics insi
wavy walled channel. Nishimura et al. [3] investigated fl
characteristics such as flow pattern, pressure drop, and
shear stress in a channel with symmetric sinusoidal w
wall. Kumar [4] presented parametric results of flow a
thermal field inside a vertical wavy enclosure embedded
pours media. He concluded that the surface temperature
very sensitive to the drifts in the surface undulations, ph
of the wavy surface, and number of the wave. Asako
Faghri [5] gave a Finite Volume prediction of heat trans
and fluid flow characteristics inside a wavy walled d
and tube, respectively. Lage and Bejan [6] documented
Elsevier SAS. All rights reserved.
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Nomenclature

a dimensionless parameter= α/λ

g gravity vector . . . . . . . . . . . . . . . . . . . . . . . . m·s−2

Gr Grashof number= ρ2gβ�T δ3/µ2

h heat transfer coefficient . . . . . . . . . W·m−2·K−1

k thermal conductivity . . . . . . . . . . . . W·m−1·K−1

ṁ mass flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg·s−1

Nu Nusselt number (see Eqs. (17) and (18))
n̂ unit normal vector
Pr Prandtl number= µCP /k

p pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . N·m−2

S surface area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
ui velocity component ati direction. . . . . . . m·s−1

uj velocity component atj direction . . . . . . m·s−1

V volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m3

x horizontal coordinate . . . . . . . . . . . . . . . . . . . . . m
X normalized axial distance= x/λ

y vertical coordinate . . . . . . . . . . . . . . . . . . . . . . . . m

Greek symbols

α amplitude of the top and the bottom walls . . . m
β thermal expansion coefficient . . . . . . . . . . . . K−1

δ inter wall spacing between the top and
the bottom walls . . . . . . . . . . . . . . . . . . . . . . . . . m

λ horizontal length of the cavity . . . . . . . . . . . . . m
µ dynamic viscosity . . . . . . . . . . . . . . . kg·m−1·s−1

φ any variable
ρ mass density . . . . . . . . . . . . . . . . . . . . . . . . kg·m−3

Γ diffusion coefficient

Subscripts

av average value
∞ at ambient condition
e at the face ‘e’
C value based on cold wall
H value based on hot wall
i, j Cartesian notation ofx andy direction
L local value
w value at wall
0 reference value
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transfer results near a periodically (timewise and spa
stretching wall. Adjlout et al. [7] reported natural convecti
in an inclined cavity with hot wavy wall and cold flat wa
One of their interesting findings was the decrease of ave
heat transfer with the surface waviness when compared
flat wall cavity.

In the present investigation, characteristics of natural c
vection inside a wavy enclosure are presented for an inc
pressible Newtonian fluid. Rate of heat transfer in term
local and global Nusselt numbers are presented for diffe
amplitude-wavelength ratios and Grashof numbers, res
tively. Flow and thermal fields are analyzed by parame
presentations of streamlines and isothermal lines.

2. Mathematical modeling

In the present investigation, we take the advantag
Finite Volume method to generate body fitted grid w
collocated variable arrangement. The integral forms
governing equations (continuity, momentum and energy)
as follows:∫
S

ρv · n̂dS = 0 (1)

∫
S

ρuiv · n̂dS

=
∫
µgradui · n̂dS −

∫
pii · n̂dS +

∫
ρbi dV (2)
S S V
-

∫
S

ρujv · n̂dS

=
∫
S

µgraduj · n̂dS −
∫
S

pij · n̂dS +
∫
V

ρbj dV (3)

∫
S

ρT v · n̂dS =
∫
S

k gradT · n̂dS (4)

wherebi andbj is the body forces in thei andj th Cartesian
directions. In cases considered here, the only body forc
the buoyancy force, which is implemented by applying
Boussinesq approximation

ρbi = ρ0giβ (T − T0) (5)

wheregi is the ith component of the gravity acceleratio
vector,T0 is the reference temperature, andρ0 is the density
at T0. For present investigation, we used the followi
boundary conditions:

Bottom wall: 0� x � λ andy = α − α cos(2πx);
ui = uj = 0 andT = TH

Top wall: 0� x � λ andy = δ+ α − α cos(2πx);
ui = uj = 0 andT = TC

Left wall: x = 0 and 0� y � δ;
ui = uj = 0 and∂T /∂n= 0

Right wall:x = λ and 0� y � δ;
ui = uj = 0 and∂T /∂n= 0

(6)

Eqs. (1)–(4) can be written in a generalized form∫
ρφv · n̂dS =

∫
Γ gradφ · n̂dS +

∫
qφ dV (7)
S S V
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Fig. 1. Numerical grid structure and (b) computational domain.

Eqs. (1)–(4) are discretized using control-volume ba
Finite Volume method with collocated variable arrangem
Solution procedures with detail algorithm are available
references by Ferziger and Peric [8] and Patankar [9].

In Figs. 1(a) and 1(b), numerical grid structure a
schematic diagram of the computational domain with g
metrical parameters and boundary conditions used in pre
investigation are shown.

3. Numerical scheme

The Finite Volume method starts from the conservat
equation in integral form∫
S

ρφv · n̂dS =
∫
S

Γ gradφ · n̂dS +
∫
V

qφ dV (8)

The solution domain is first subdivided into a fin
number of contiguous control volumes (CVs), and
conservation equations are applied to each CV. At
centroid of each CV lies a computational node at wh
the variable values are to be calculated. The computati
node at which all unknowns are stored in one-dimensio
arrays and sorted level-wise, starting with level 1 (coa
grid) to level 3 (fine grid). Collocated arrangement is us
for the variables, i.e., all variables are calculated at
same CV center. Both surface and volume integrals in
conservation equations (1)–(4) are approximated here u
midpoint rule, i.e., the value of the integrand at the cen
of cell face or CV is multiplied by the face area or C
volume.

We look first at the calculation of mass fluxes. Only t
East side of a 2D CV shown in Fig. 2 will be considere
t

l

Fig. 2. A typical 2D-control volume and the notation used.

the same approach applies to other faces—only the ind
need to be changed. The CV may have any number of fa
the analysis is not restricted to quadrilateral CVs like
one shown in Fig. 2. The midpoint rule approximation of
mass flux leads to:

ṁe =
∫
Se

ρv · n̂dS ≈ (ρv · n̂)eSe (9)

The unit normal vector at the face ‘e’ is defined by

neSe = Sieii = (yne − yse)i − (xne − xse)j (10)

and the surface area,Se is

Se =
√(
Sxe

)2 + (
S
y
e

)2 (11)

With these definitions the expression for the mass
becomes:

ṁe = ρe
(
Sxux + Syuy

)
e

(12)

The difference between a Cartesian and a non-orthog
grid is that, in the latter case, the surface vector
components in more than one Cartesian direction
all the velocity components contribute to the mass fl
Each Cartesian velocity component is multiplied by
corresponding surface vector component.

The convection flux of any transported quantity is usua
calculated by assuming that the mass flux is known wh
with the midpoint rule approximation, leads to

Fce =
∫
Se

ρφv · n̂dS ≈ ṁeφe (13)

whereφe is the value ofφ at the center of the cell face. Th
midpoint rule applied to the integrated flux gives

Fce =
∫
S

Γ gradφ · n̂dS ≈ (Γ gradφ · n̂)eSe (14)

The gradient ofφ at the cell face center can be expres
either in terms of the derivatives with respect to glo
Cartesian coordinates of local orthogonal coordinates (n, t),
e.g., in 2D:

gradφ = ∂φ
i + ∂φ

j = ∂φ
n + ∂φ

t (15)

∂x ∂y ∂n ∂t
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Fig. 3. Grid sensitivity test for (a)Gr = 104 and (b)Gr = 105, a = 0.10.

wheren andt represent the coordinate direction normal a
tangential to the surface, respectively.

If the variation of φ in the vicinity of the cell face
is described by a shape function, it is then possible
differentiate this function at the ‘e’ location to find the
derivatives with respect to the Cartesian coordinates.
diffusive flux is then

Fde = Γe
∑
i

(
∂φ

∂xi

)
e

Sie (16)

This approximation is independent of the CV shape
is approximately of second order accurate. The final
cretized form of governing equations is solved iteratively
ing Stone’s SIP solver [8]. Iteration is continued until diffe
ence between two consecutive field values of variables is
than or equal to 10−4. For further stabilization of numerica
algorithm, under relaxation factors of 0.1–0.7 are used.
4. Results and discussions

Computations were carried out for three selected
sizes (i.e., 40× 20, 80× 40, 160× 80). Figs. 3(a) and 3(b
show Nusselt number distribution along the hot wall
Grashof numbers equal to 104 and 105, and amplitude-
wavelength ratio,a = 0.10. Coarse grid (40× 20) solution
near the middle point of the hot wall of the cavity sho
some deviation with the medium coarse and fine gr
solutions. Except this deviation, results for the selec
grid sizes show good agreement with each other. Med
coarse (80× 40) and fine (160× 80) grids show almos
same result. For better accuracy, fine grid (160× 80)
results are presented throughout this paper. For a parti
amplitude-wavelength ratio (a), Grashof number was varie
by changing the dynamic viscosity keeping other fluid a
geometric variables constant.

For code validation, our numerical results are compa
with the experimental results of Ozisic [10] and Bejan [1
for a = 0.0. Comparisons are presented in Fig. 4, wh
average Nusselt number is plotted as a function of Gra
number. Present prediction shows a very good agree
with the result of Ozisic [10] and a fair agreement with Be
[11].

4.1. Heat transfer

Heat transfer rate is measured by local (NuL) and average
(Nuav) Nusselt numbers. Following equations are used
calculate the local and average Nusselt numbers:

NuL = δ

�T

(
∂T

∂n

)
w

(17)

Nuav = 1

λ

λ∫
0

NuL dx (18)

where the gradient term(∂T /∂n)w in Eq. (17) is the
temperature gradient normal to the hot wall. Local Nus

Fig. 4. Code validation of present work with other reference works.
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Fig. 5. Variation of local Nusselt number for different Grashof number.
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number distribution is presented in Fig. 5 and Fig. 6. Aver
Nusselt number distribution is presented in Fig. 7. De
discussions are presented in the following two sections.

4.2. Local heat transfer distribution

Local Nusselt number distribution at the bottom w
is shown in Figs. 5(a)–(d) forGr = 5 × 103, 104, 105,
and 106. At Gr = 5 × 103 and a = 0.0, Nusselt numbe
distribution profile is symmetric with respect toX = 0.5
and shows a periodic nature of distribution with resp
to the distanceX. For a = 0.05, 0.10, and 0.15,NuL
profiles are symmetric but no longer periodic asa = 0.0
case due to the surface waviness. Fora > 0, two distinct
zones are observed depending on the magnitude of the
Nusselt number. For 0.25 � X � 0.75, NuL is higher in
magnitude for highera. Opposite scenario is observed f
X < 0.25 andX > 0.75. This type of behavior of theNuL–X
profile strongly depends on the Grashof number as sh
in Figs. 5(b)–(d). AtGr = 105, NuL decreases with th
increase ofa atX= 0.5. Combined effects of multi-cellula
flow and periodic swirling of isotherms (as we will see lat
change theNuL–X profile to a periodic shape fora > 0.0,
which differs froma = 0 case.
l

Local Nusselt number is plotted for constant amplitu
wavelength ratio(a) for different Grashof numbers (=
103,104,105,106) in Figs. 6(a)–(d). At lower Grasho
number, magnitude of Nusselt number is almost same a
X direction for a particular a. Larger variation in the
magnitude ofNuL is observed at high Grashof numbers. F
zero surface waviness (a = 0), peak value ofNuL occurs at
the line of symmetry(X = 0.5) for higher Grashof numbe
For a > 0, peak value ofNuL occurs other than the line o
symmetry asa = 0 case.

4.3. Average heat transfer distribution

The effect of amplitude-wavelength ratio on average h
rate transfer is shown in Fig. 7. At lower Grashof number
effect of amplitude-wavelength ratio is significant. Howev
at higher Grashof number this effect is very small. At hig
amplitude-wavelength ratio heat transfer rate is highe
lower Grashof number when amplitude-wavelength ra
increase from zero to other values and after then, fur
increases of amplitude-wavelength ratio shows a neglig
effect on average heat transfer rate.
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Fig. 6. Variation of local Nusselt number for different amplitude-wavelength ratio.
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Fig. 7. Variation of average Nusselt number with Grashof numbers
different amplitude-wavelength ratio.

4.4. Flow field

Figs. 8(a)–(f) show the constant stream-function conto
for six selected Grashof numbers fora = 0.10. At Gr = 5×
103, convection current inside the cavity is comparativ
weak. Two counter rotating vortices with small cores
observed (Fig. 8(a)). This bi-cellular flow pattern divides
cavity into two symmetric parts with respect to the center
(X = 0.5) of the cavity. Vortex at the left side and at the rig
side of the line of symmetry rotates counterclockwise
clockwise direction, respectively. At each half of the cav
fluid stream near the hot wall tends to move towards
centerline of the cavity where two streams from the oppo
direction mix and rise upwards. Vertical stream of the fl
splits into two streams (directed to the adiabatic walls
the top wall of the cavity. This makes two counter rotat
vortices (bi-cellular flow) inside the cavity.Gr = 104 is also
characterized by the bi-cellular flow pattern but elonga
core. At Gr = 5 × 104, multi-cellular flow appears with
four vortices. Due to comparatively high buoyant effe
another vertical stream of the fluid appears near the adia
walls. Considering one half of the cavity, one stream of fl
(at the top wall) moves towards the adiabatic wall fro
the symmetry line and another stream moves towards
symmetry line from the adiabatic wall. These two oppo
streams produce a downward stream of the fluid at t
intersection, thus producing two counter rotating vorti
at each half of the cavity. Further increase of Gras
number (Gr = 105 and 2× 105) increases the strength
the vortices, keeping four-cell multi-cellular flow patte
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Fig. 8. Streamlines for different Grashof number fora = 0.10.
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inside the cavity. The overall physics of flow will be mo
clear to understand when thermal field will be presen
and discussed later. An interesting reverse transition oc
at Gr = 106. Multi-cellular flow patterns turns into a b
cellular flow at this Grashof number (= 106). This bi-cellular
flow pattern is qualitatively different from the flow pattern
Gr � 104. High convection current shifts the core of ea
vortex towards the adiabatic wall of the cavity.

Fig. 9 shows the effect of amplitude-wavelength ra
(a) on flow field at constant Grashof number (= 5 ×
104). Whatever the value ofa, flow inside the cavity
is characterized by a four-cell multi-cellular pattern. A
increase in the value ofa increases the size of two vortice
near the line of symmetry and decreases the size nea
adiabatic walls.

4.5. Velocity vector

To facilitate our understanding of flow field, velocity ve
tor is plotted in Figs. 10(a)–(c) fora = 0.10 andGr = 104,
5 × 104, and 5× 105. For all Grashof numbers, a vert
cal stream of fluid (velocity vectors are directed upward
the line of symmetry characterizes the flow. AtGr = 104,
velocity profiles are similar to the profile inside a shallo
cavity [11] except at or near the line of symmetry and cl
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Fig. 9. Streamlines for different amplitude-wavelength ratio
Gr = 5× 104.

to the adiabatic walls. Two small ellipsis with arrow mar
show the motion and rotational direction of the fluid ins
the cavity at this Grashof number. Except at the walls, a
layer of fluid is almost motionless (stagnant) approxima
at the center of each ellipse. Direction of the fluid mot
above and below this stagnant fluid is opposite. AtGr =
5 × 105, flow is multi-cellular as already described in pr
vious section which is supported by the direction of veloc
vectors. Four small circles with arrow marks facilitate to u
derstand the direction of motion of the fluid. Fluid is motio
less at the center of each circle. Flow atGr = 5 × 105 is bi-
cellular but qualitatively different from the bi-cellular flo
Fig. 10. Velocity Vector for different Grashof numbers fora = 0.10.

pattern atGr = 104. Boundary layer forms due to the hig
convection current and a large portion of the fluid is stagn
at the center of the each half of the cavity (see Fig. 10(c

4.6. Thermal field

Thermal fields are presented in the form of isotherm
lines in Figs. 11(a)–(f) fora = 0.10 and for some selecte
values of Grashof numbers as indicated in figures. For
convenience of analysis, temperature is made dimensio
using the expression (T − T∞)/(TH − TC) so that the val-
ues of temperatures fall in between 0 and 1 in each fig
Twenty contours are plotted in each figure with the int
val 0.05. At Gr = 5 × 103, buoyancy effect is negligible
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Fig. 11. Isothermal lines for different Grashof numbers fora = 0.10.
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Isothermal lines are nearly parallel to each other and
low the geometry of the wavy surfaces. Some deviatio
observed near the hot wall around the centerline(X = 0.5)
of the cavity due the effect of upward fluid stream. Isoth
mal lines swirl atGr = 104 due the influence of convectio
current. Two hot spots appear near the bottom wall, wh
isothermal lines are concentrated, leaving high tempera
gradient. Heat transfer rate is higher in magnitude at the
spots. A periodic swirling of isothermal lines appear atGr =
5×104 and 2×105 due the appearance of multi-cellular flo
(see Figs. 8(c)–(e)). Hot spots elongate along the bo
wall with the increase of Grashof number. AtGr = 3 × 105

and 106, periodic swirling nature of isothermal lines disa
pears due to the occurrence of reverse transition in flow fi
Hot spots almost occupy the bottom wall of the cavity. H
transfer rate is very high as already indicated in Fig. 5.

5. Conclusion

Buoyancy induced flow and heat transfer inside a w
enclosure with two wavy walls and two straight walls are
vestigated numerically. Amplitude-wavelength ratio affe
both local heat transfer rate and flow field as well as th
mal field. Increasing amplitude-wavelength ratio chan
the true periodic nature of the local Nusselt number distr
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tion at higher Grashof number and has a little effect at lo
Grashof number. Amplitude-wavelength ratio has no sign
cant influence on average heat transfer rate. Only at lo
Grashof number, heat transfer rate rises when amplit
wavelength ratio changes from zero to other values, a
then it has almost negligible effect on average heat tran
rate. At lower Grashof number, flow field is characterized
the appearance of bi-cellular pattern, which turns into mu
cellular pattern at higher Grashof numbers. Further incre
of Grashof number causes the reverse transition by chan
the multi-cellular flow into bi-cellular.
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